本文關鍵字:
以圖像說明
相對于陷入統計性的論文中,讓我們以圖像對有關的課題進行討論。
所有的工藝都有不同程度的分別。買家必須詢問的問題是"這個工藝或機器精確及可重復嗎?"和"怎樣給我肯定?"。精度的確定方法是將機器的運動與標準化組織可追溯的高精度量具標準進行比較。
試想精度與可重復性之間的概率。假設我們對X和Y偏差測量了10次,并將測得的10個結果點繪在目標圖上 (如圖1所示)。圖中的情況1 (Case 1) 展示了可重復性極高的機器,所有測量值都集中聚合在目標中心點上,各點之間的均差 (即標準偏差,用sigma或希臘符號σ來表示) 非常小。
然而,小標準偏差并不保證機器的精度。情況2 (Case 2) 表示可重復性極高但不精確的機器。這種情況通??梢栽诎惭b時進行調整來修正。高精度與可重復性的結合正是我們努力的目標。
確定精度和精密性的簡單方法是對同一事件進行多次的重復測量。就絲網印刷機而言,最重要的測量是X和Y基準對位。理論上,X和Y軸的偏移量必須一致,但實際上由于固有誤差,機器不可能每一次都移動至完全準確的位置。誤差越大,標準偏差便越多。
在進行多次重復性測量后,便可采取自然規律了。把所有的讀數點繪到圖上,便會形成一條所謂的正交分布曲線 (圖2的鐘形曲線也叫Gaussian高斯曲線)。正交分布表示標準偏差與設備精度和可重復性的關系。一致的不精確性會使曲線向左或右偏離標稱值,十分精確機器的曲線則會以標稱值為中心。另一方面,可重復性與峰值兩側的曲線下降斜率有關;陡而窄的曲線表示可重復性很高。假如機器的可重復性高但不精確,它的曲線就會狹窄且向左或右偏離標稱值。用戶必須確定機器擁有足夠的可重復性,作為優先的考慮。只要這一點成立,就可以對機器一貫不精確的原因加以識別和糾正。本節的余下部分將說明如何分析正交分布以便理解可重復性。